Affinement tridimensionnel du sulfanilamide ß

PAR MARC ALLEAUME ET JOSEPH DECAP

Laboratoire de Minéralogie et Cristallographie, Faculté des Sciences de Bordeaux-Talence (Gde), France

(Reçu le 11 juin 1964)

 β -Sulphanilamide is monoclinic, space group $P2_1/c$. The structure has been determined by Patterson projections and the heavy-atom method. The parameters have been refined by least-squares applied to 1031 independent reflexions. The final *R* index is 0.10. The hydrogen-bond system is discussed.

Introduction

La structure de la forme β du sulfanilamide p-(H₂NSO₂)C₆H₄(NH₂) a été déterminée dans le cadre d'une étude sur les composés d'intérêt biologique.

Le sulfanilamide existe sous 3 formes cristallographiques α , β , γ (Watanabe, 1941, 1942; Yakowitz, 1948). L'étude de la forme γ est en cours au laboratoire, la forme α est étudiée par O'Connor & Maslen (1965).

Données expérimentales

De beaux cristaux de sulfanilamide β ont été préparés par évaporation lente d'une solution dans l'alcool méthylique.

Les paramètres de la maille monoclinique sont:

 $a = 9,000 \pm 0,005, b = 9,015 \pm 0,005$ $c = 10,05 \pm 0,01$ Å; $\beta = 111^{\circ} 30' \pm 10'$ $d_{\text{theorique}}$: 1,506 $d_{\text{mesurée}}$: 1,5 Z=4

Groupe spatial: $P2_1/c$

La direction d'allongement du cristal est c. Le cristal utilisé pour obtenir les rétigrammes de De Jong a été taillé de façon à lui donner la forme d'un cylindre de 0,3 mm de rayon. Les rétigrammes ont été obtenus avec la radiation $K\alpha$ du cuivre. Dix plans réciproques ont été observés. Les mesures d'intensité ont été effectuées par comparaison visuelle avec une échelle d'intensité. 1031 reflexions, dont 118 n'étaient pas mesurables, ont été utilisées lors de l'affinement.

Les corrections apportées à ces mesures ont été: Correction de Lorentz et de polarisation (Gay, 1957). Correction d'absorption avec $\mu = 33$ cm⁻¹ (*Internatio*-

nal Tables for X-ray Crystallography, 1959, 1962). Correction d'extinction secondaire, en cours d'affinement

L'étude de l'écart-type sur les intensités mesurées fait apparaître une erreur relative moyenne de 8% sur les facteurs de structure observés.

Tous les calculs ont été effectués sur ordinateur IBM 1620. Les sommations de Fourier ont été faites au photosommateur de von Eller.

Détermination de la structure

Projection (001)

A partir de la projection de la fonction de Patterson, les coordonnées x et y de l'atome de soufre ont été aisément déterminées. Les positions des atomes légers, à l'exception de celle de l'atome d'azote N(1), ont été obtenues par la méthode de l'atome lourd. L'étude de la synthèse de Fourier bidimensionnelle et des considérations géométriques ont permis de situer ce dernier atome.

L'affinement de cette projection a été arrêté à R=0,15.

Projection (100)

Cette projection de la fonction de Patterson permettait seulement de définir la 3éme coordonnée z de l'atome de soufre.

Le reste de la molécule a été placé par étude systématique des différentes positions possibles, compte tenu de la géométrie de la molécule et des possibilités d'encombrement stérique de la maille cristalline. Ces différentes hypothèses ont été testées par comparaison des F_c avec les F_o d'indices hk3. Le facteur de reliabilité de ce plan réciproque hk3 a été ensuite amené à 0,18 par affinement de la meilleure hypothèse.

Affinement tridimensionnel

L'affinement tridimensionnel de la structure a été effectué par la méthode des moindres carrés sur

Tableau 1. Valeurs finales des paramètres

					Écart au				
					plan moyen				
	x/a	y/b	z/c	В	Å				
S	0,0822	0,8531	0,2875	—	0,03				
O(1)	0,0081	0,8602	0,1336	3,33	1,01				
O(2)	0,1179	0,9906	0,3666	3,10	0,22				
N(1)	0,9595	0,7601	0,3417	3,16	-1,4				
N(2)	0,6926	0,5318	0,4090	3,65	0,03				
C(1)	0,2624	0,7570	0,3276	2,28	-0,01				
C(2)	0,2654	0,6273	0,2509	2,47	-0,01				
C(3)	0,4082	0,5528	0,2804	2,70	-0,02				
C(4)	0,5507	0,6058	0,3841	2,55	0,00				
C(5)	0,5451	0,7351	0,4609	2,96	-0,01				
C(6)	0,4022	0,8092	0,4333	2,66	-0,02				
H(1)	0,165	0,585	0,183	2,4					
H(2)	0,420	0,467	0,224	2,4					
H(3)	0,627	0,775	0,521	2,4					
H(4)	0,403	0,904	0,489	2,4					
H(5)	0,984	0,730	0,425	2,4					
H(6)	0,922	0,675	0,267	2,4					
H(7)	0,769	0,465	0,389	2,4					
H(8)	0,787	0,580	0,480	2,4					
Atome de soufre:									
$b_{11} =$	=0.0089 b22	$=0.0056 b_3$	a = 0.0081 b	12 = 0.000	01				

$$b_{11} = 0,0089 \ b_{22} = 0,0056 \ b_{33} = 0,0081 \ b_{12} = 0,0001 \ b_{23} = 0,0112 \ b_{13} = 0,0071$$

AFFINEMENT TRIDIMENSIONNEL DU SULFANILAMIDE β

 Tableau 2. Facteurs de structure observés et calculés

h	k	I KF.	Fe	h k	I KF.	F.	h k	I KFo	F,	h k	I KFe	Fe.	h k	I KF.	Fe	h	k 1	KF.	F,
1 2	0	0 33.1	3:1.1 67.5	4 10 5 1	1 2.5	2.2	1 4	2 18.7	17.0	-6 2 -6 3	2 5.3 2 12.5	-2.7 11.7	-2 P -2 9 -2 10	3 13.7	-12.3	5	54 64	9.6 5.2	9.0
456	ů o	0 3.9 0 22.1 0 38.5	3.7 -18.6 -31.2	5 2 5 3 5 4	1 18.4 1 13.0 1 6.2	-16.9 13.6 4.4	1 7	2 < 3.0 2 7.1 2 22.1	-7.2	-6 5 -6 6 -6 7	2 17.7 2 10.8 2 4.7	-14.9 10.5 2.9	-2 11 -3 1	3 3.P 3 22.6	4.9 -24.4	6 6	0 4 1 4 2 4	7.1 12.5 5.6	-4.4 -11.6 -5.7
7 8 9	000	0 8.2 0 7.0 7 < 2.2	7.8 -3.9 .9	5 5 5 6 5 7	1 < 2.5 1 8.4 1 5.1	5 7.1 3.6	1 10	2 5.4	6.5	-6 8 -6 9	2 14.5 2 4.0	13.8 3.8	-3 2 -3 3 -3 4	3 1.7 3 26.1 3 7.8	-2.8 26.5 -6.5	6 6	34 45 4	15.7 18.9 11.3	-14.2 19.6 11.3
10	0	0 4.1	4.4 53.7	59	1 6.6	-6.5	2 0 2 1 2 2	2 27.1 2 19.5 2 15.2	25.3 -25.3 16.0	-7 0 -7 1 -7 2	2 49.0 2 3.0 2 10.2	51.7 -2.9 -10.7	-3 5 -3 7	3 6.9 3 9.9 3 32.3	7.0 F.1 -29.1	7	0 4	7.6	-5.5 -10.5
234		0 < 1.8 0 < 22.9	20.7	6 2	1 19.5 1 3.2 1 < 2.5	18.1 -2.3 1.1	2 3	2 < 2.2 2 8.5 2 29.8	6.9 29.4	-7 3 -7 4 -7 5	2 < 3.0 2 < 3.0 2 10.5	-3.3 -2.4 -9.1	-3 9 -3 10	3 5.1	-18.6 5.9 3	7	2 4 3 4	2.4	-5.9
26 7 8		0 2.9 0 30.3 0 < 2.6	-30.3	6 6 7	1 8.9 1 7.4 1 3.7	9.1 6.4 2.4	2 7 2 8 2 9	2 < 3.0 2 16.2 2 < 2.7	-2.7	-7 7 -7 ?	2 10.7 2 2.4 2 10.3	2.3 10.1	-4 1 -4 2	3 34.5 3 2.0	-37.9	-1	1 4 4 4 4	26.5 5.1 26.7	31.5
.) 10	1	0 12.0 0 3.4	-12.2	6 έ 7 1	i ñ.7 1 7.3	-9.8 5.4	2 1Ó 3 0	2 3.9	4.1 4.7	-8 0 -8 1 -8 2	$ \begin{array}{ccc} 2 & \hat{v}.\hat{v} \\ 2 & < 3.0 \\ 2 & < 3.0 \end{array} $	5.6 4.0 - 7	-4 3 4 5	3 36.4 3 3.2 3 5.5	35.2 -1.4 5.4	-1	1444	21.0 2.4 7.5	-23.0
0 1 2	2 2	0 23.6 0 15.3 0 29.6	-26.1 -16.4 -35.9	7 2 7 3 7 4	1 15.9 1 11.2 1 < 2.4	-15.1 -9.9 -3.5	3 1 3 2 3 3	2 5.3 2 32.1 2 < 2.5	-6.6 39.9	-8 3	2 12.3 2 12.3 2 5.0	11.8 -10.5 3.7	-4 6 -4 7 -4 8	3 19.4 3 24.8 3 4.2	-19.1 -24.6 -3.4	-1 -1 -1	7 4 8 9 4	2.9 6.4 5.2	1.3 6.9 5.0
345	2 2	0 14.0 0 32.5 0 11.9	-15.5 -30.4 -9.9	7 6 7 7	1 ¢ 2.3 1 6.8 1 6.5	3.7 7.4 7.4	3 5 5 5	2 < 2.8 2 30.0	-4.7 -1.3 30.0	-? 6 -?) 0	2 10.8	11.9	-49 -51	3 3.5 3 26.3	4.5 -28.3	-2	0 4 1 4	6.6 14.8	-3.5 -14.0
789	2 1	0 8.0 0 < 2.6 0 5.7	5.9	8 1 8 2 8 3	$1 < \frac{8.5}{2.3}$ $1 < \frac{14.2}{14.2}$	8.8 .2 -14.4	3 8 9	2 7.9 2 8.4	-9.2	-9 2	2 11.1 2 14.0 2 6.0	-8.9	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	3 12.5 3 6.0	12.2	-2	3 4 4	35.7	-0.0 3.º.9 -3.7 8.0
1 2	3 (D 7.7 D 25.9	7.2	8 4 8 5	1 6.6	5.8 -5.8	40 41 42	2 7.2 2 9.8 2 6.0	6.2 -9.3 7.0	-95 -101	2 7.6	6.8 -8.0	-5 6 -5 7 -5 8	3 10.1 3 23.2 3 6.9	7.7 -21.5 7.9	-2 -2 -2	6 4 7 4 8 4	25.2 10.9 4.1	24.9 10.6 -4.1
3454	3 0	0 38.0 0 13.0 0 10.8	37.6 11.5 11.6	9 2 9 3	1 6.1	5.8 -18.0	4 3	2 6.5 2 19.6 2 8.9	-19.2	-10 2 -10 3 -10 4	2 6.7 2 4.7 2 < 1.6	-7.1 -3.3 -1.0	-5 9 -6 1	3 6.5	-27.0	-3	0 4	4.6	-2.4
0	4 4	0 < 2.0 0 24.4	-24.9	-1 1 -1 2 -1 3	1 < .9 1 94.6 1 20.9	1 108.6 -23.0	4 7 4 8 4 9	2 5.9	5.0	-11 0 -11 1	2 3.9 2 6.2	-4.4	-6 3 -6 5	3 13.2 3 F.4 3 C.F	12.2 -8.2 1.2	-3	344	19.U 27.7 13.4	-19.7 -27.9 12.6
234	4 0	0 21.0 D 5.8 D 3.7	-21.2 -5.7 -3.2	-1 4 -1 5 -1 6	1 4.1 1 13.4 1 11.1	-3.1 12.4 -10.0	4 10 5 0	2 5.2	-0.5 7.5				-6 6 -6 7 -6 8	3 15.7 3 16.9 3 6.7	-15.8 -19.4 7.9	-3 -3 -3	6 4 7 4 8 4	18.4 6.1 6.1	16.5 -6.3 4.3
6 7 8	444	0 14.0 0 11.9 0 4.8	11.7	-1 6 -1 9 -1 10	1 24.1 1 7.1 1 3.5	20.8 -6.6 11.2	5253	2 13.8 2 8.5 2 21.0	-14.6	0 2 3 0 4	3 7.9 3 4.7 3 1.8 3 2.1	6.3 .1	-0 5 7 1 -7 2	3 10.5 3 25.4	-10.8	-4 -4	0 4 1 4 2	3.7 15.2 22.4	4.6 -17.0 22.8
12	5	0 21.9	-19.8	-1 11	1 2.1 1 39.5	1.6 46.6	5 5 5 6 5 7	2 < 3.0 2 16.9 2 4.0	16.0 4.7	0 5 0 6 0 7	3 19.7 3 11.7 3 13.4	17.2 J.3 10.2	-7 3 -7 4 -7 5	3 13.1 3 16.1 3 2.9	11.4 -15.9 1.4	-4 -4	3445	10.3 3.1 18.6	-11.4 -2.9 18.1
3456	555	0 29.8 0 34.4 0 19.5	-28.7 -33.4 -18.1 -2.6	-2 2 -2 3 -2 4	1 34.1 1 25.9 1 11.0	37.0 30.5 11.8	5 8 5 9	2 4.2 2 2.2	3.2	3 0 9 0 01 0	3 9.j 3 4.0 3 2.1	-7.9	-7 6 -7 7 -7 8	3 10.5 3 4.5 3 10.3	-10.0 -5.2 12.0	-4 -4 -4	6 4 7 4 8 4	24.2 7.1 4.8	23.6 -7.1 2.7
78	5 0	0 4.9 0 9.7	-5.8	-2 6 -2 7 -2 8	1 26.4 1 28.0 1 25.6	-24.4 23.9 21.0	6 1 5 2 6 3	2 30.7 2 < 3.0 2 < 3.0	29.6		3 5.1 3 6.1 3 < 1.7	-6.6 -1.1	-7 9 -8 1 -8 2	3 12.5 3 14.8	4.0 11.P 32.3	-5 -5 -5	0 4 1 4 2 4	10.2 32.1	9.2 -36.4 16.7
0 1 2	6 0	0 15.5 0 34.6 0 7.9	14.1 30.2 6.4	-2 9 -2 10	1 2.6	-3.8 5.0	656	2 20.6 2 6.4 2 6.7	-20.P -5.7 5.0	1 4	3 15.0 3 8.1 3 < 2.5	-17.7 9.3 -1.5	-8 3 -8 4 -8 5	3 < 2.9 3 5.3 3 < 2.6	-1.3 -5.1 1.9	-5 -5 -5	344	12.4 20.7 31.8	-11.9 22.7 34.0
5456	6 0	23.4 0 14.8 0 8.2	-20.9 -14.2 -7.8	-3 2 -3 3 -3 4	1 31.7 1 28.1 1 28.1	35.9 -34.9	7 0	2 5.2	-18.7	1 6 1 7 1 8	3 2.7 3 13.2 3 5.7	-2.2	-8 6 -8 7 -8 8	3 F.4 3 3.4 3 9.2	-10.0 3.7 11.7	-5 -6	0 4	6.9 50.0	-7.0
7 1	6 0	0 9.2 0 < 2.7	-9.0 -1.0	-3 5 -3 6 -3 7	1 < 2.2 1 10.7 1 45.1	-1.7 -10.8 43.0	7 2 7 3 7 4	2 4.3 2 9.2 2 12.0	-2.5 7.7 -13.1	1 10	3 6.8 3 2.1	-8.3 6.7 -3.7	-9 1 -9 2 -9 3	3 4.3 3 4.3 3 7.3	5.1 3.5 -8.0	-6 -6 -6	2 4 4 4	10.2	-20.8 11.4 4.1 8.3
2345	7 0	0 < 2.7 0 32.7 0 10.6	29.5 -10.4 5.9	-3 8 -4 1	1 3.4 1 51.6	-3.6 58.1	7576	2 14.7 2 7.6	-15.5	2 1 2 2 2 3	3 22.3 3 8.8 3 26.1	24.3 7.5 -26.4	-9 5	3 < 5.1 3 < 2.1 3 - 5.7	-6.7 -6.5	-6 -6	5 4	4 2.9 6.2	-1.3
6 0	7 i 8 i	0 3.4 D 30.2	2.8 27.4	-4 3	1 17.3 1 15.2 1 7.8	-17.4 15.0 9.0	8 1 8 2 8 3	$ \begin{array}{cccc} 2 & 15.2 \\ 2 & < 2.6 \\ 2 & < 2.4 \end{array} $	15.2 -1.4 3.3	2 5 2 6 7	3 < 2.4 3 7.6 3 13.4 7 1	2.9 6.8 13.0	-10 1 -10 2	3 9.4 3 9.7 3 9.1	9.1 9.1	-7 -7 -7	0 4 1 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.7 13.2 4.8	-28.9
1 2 3	888	22.4 0 5.2 0 2.9	19.3 5.7 1.2	-4 6 -4 7 -4 8	1 10.2 1 26.4 1 4.5	9.9 24.0 4.0	8 L 8 5	2 < 2.2 2 10.5	-12.7	2 1	3 10.9 3 7.7	11.9 -7.3	-10 3 -10 4 -10 5	3 3.6 3 3.2 3 2.0	-3.7 -3.6 4	-7 -7 -7	1444	12.R 2.R 7.9	12.7
56	8 0	5 15.2 5 5.8	-13.7	-4 9 -4 10	1 9.1 1 3.0	-9.5	90 91 92	2 < 2.0 2 7.3 2 < 1.9	-1.1 7.5 3.0	3 1 2 3 3	3 11.3 3 23.9 3 19.2	11.1 25.3 -19.5	-11 1 -11 2	3 6.9 3 1.9	6.8 -1.5	2	0 4 1 4	26.8	-27.7
1 2 3	9 1	0 11.7 0 18.3 0 6.8	10.6 18.9 6.6	-5 2 34	1 5.1 1 23.5 1 < 2.4	-4.6 -21.4 -3.0	9 i -1 0	2 7.0	6.1 -95.6	3 5 6 7	3 10.9 3 11.0 3 23.5 3 13.7	-11.4 -21.0	-11 3 9 1 9 2	3 2.3 3 7.7	-5.6 -2.6	3-	3 4	2.8 8.4	5
4 5	9 0	0 11.9	12.8	-5 5 -5 7	1 11.9 1 < 2.5 1 16.0	-10.5 .7 16.4	-1 1 -1 2 -1 3	2 56.7 2 52.4 2 37.9	60.2 62.3 44.9	3 7	3 7.2 3 5.0	7.5	9 j	3 11.4	11.8	-9 -9 -9	0 4 1 4 2 4	25.3	-24.1 2.0 -11.8
1 2 3	10 10 10 10	0 12.5	-15.5 -6.4 -6.8	-5 ki -6 1 -6 2	1 14.6 1 < 2.3	-14.6 2.2	-1 5	2 5.6 2 12.1 2 25.5	P.1 -10.7 -20.8	4 1 4 3	3 5.7 3 23.0 3 18.3	-4.8 22.9 -18.4	0 0	4 18.3 4 19.6	-18.3	-9 -9	34	7.7	6.4 17.5
0	1	1 14.3	16.7	-6 3 -6 5	21.2 1 8.6 1 < 2.5	-20.6 9.2	-1 8 -1 9 -1 10	2 18.3 2 6.0 2 10.1	-16.3 7.3 12.3	4 5 6 7	3 < 2.8 3 16.8 3 9.6	-17.0	0 3 0 4 0 5	4 < 1.9 4 21.7 4 10.1	-10.0 .1 -24.6 -10.1	0	1 5	21.8	-24.8
000	34 56	1 42.7 1 20.1	-44.6 -18.2	-6 7 -6 8	1 3.9 1 8.3 1 7.5	2.2 8.1 9.0	-2 0 -2 1	2 35.9	-41.3	4 9	3 12.P 3 3.3	14.7	0 6 0 7 0 8	4 4.3	3.1 -2.3 -4.7	000	345	27.5 8.1 11.8	29.6 -7.1 9.9
0000	78	4.7 1 20.0 1 < 2.3	-3.4 18.8 1.8	-7 1 -7 2	1 9.4 1 23.7	-4.5 6.8 -20.7	-2 3 -2 4	2 18.2 2 10.8 2 30.5	17.7 10.0	5 2 5 3	3 16.5 3 26.6 3 12.5	-18.7 26.4 11.9	1 0	4 15.8 4 43.7	-51.6	1	1 5	4.6 2.0	-5.5
0	10 1	3.2 2.9	3.0 -3.0	-7 3 -7 4 -7 5	1 < 2.5 1 9.4 1 12.0	-3.4 9.6 -12.1	-2 6 -2 7 -2 P	2 29.3 2 11.2 2 10.3	-29.1 9.9 -8.2	5 6 7	3 5.5 3 6.8 3 4.7	3.6 -7.5 -4.8	1 2 1 3 1	4 5.0 4 7.1 4 23.7	-6.5 7.2 -25.5		545	33.2 13.7 5.5	34.9 14.5 -3.8
	2 3	1 40.6 1 47.5 1 18.2	-40.1 52.6 -17.3	-7 7 -7 8	1 < 1.9 1 < 8.3	8	-2 9 -2 10 -2 11	2 9.5 2 7.0 2 3.7	9.5 8.6 4.1	5 8 5 9	3 10.8 3 2.8	12.1	1 5	4 24.0 4 4.2 4 2.8	-21.7	1	6 5 1 5	6.0	10.1 -3.8
i 1 1	5 6 7	1 18.9 1 23.2 1 14.4	-17.9 -22.9 -12.8	8 1 8 2 8 3	1 24.0 1 9.3 1 4.4	-21.0 -6.8 3.1	-3 0 -3 1 -3 2	2 26.2 2 14.1 2 19.5	-32.6 15.5 -20.7	6 2 6 3	3 (2.9 3 5.0 3 14.1	2.4	1 3	4 9.9	15.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	345	26.6 5.9 18.4	29.6
1	8 9 10	1 14.5 1 6.1 1 4.3	13.7 -4.0 5.0	-8 5	1 6.4 1 < 2.1 1 9.0	4.9 0 9.7	-3 4	2 29.9 2 7.7 2 33.8	32.8 5.3 -35.4	656	3 < 2.6 3 10.4 3 7.0	-12.2	2 1 2 2 2 3	4 7.4 4 11.2 4 < 2.4	7.7	3	1 5 2 5	7.1	-6.4
222	1 2 2	36.6 50.5	-47.1	-8 /	1 6.2 1 4.7	-6.3 -4.0 -2.8	-3 6 -3 7 -3 P	2 24.8 2 4.3 2 3.0	-22.3	68 71	3 4.5 3 9.9	5.6 P.5	2 4 2 5 2 6	4 33.4 4 22.7 4 17.6	34.4 -20.4 -17.0	3	3 5	20.3	19.3
2222	456	1 21.6	-19.9	-9 3 -9 4	i 6.7 I 4.6	6.8	-3 10	2 4.1	4.7	72 73 74	3 10.2 3 12.7 3 2.5	9.7 14.2 -1.0	2 9	4 8.5	-7.8 9.1	4	2 5	7.0 30.5	-32.4
2222	789	1 25.2 1 6.7 1 11.3	-23.9 7.0 13.0	-10 1 -10 2 -10 3	1 3.9 1 5.3 1 11.6	-3.8 5.3 11.2	-4 U -4 1 -4 2	2 19.9 2 17.9 2 33.2	21.5 15.5 38.5	7 5 7 6 7 7	3 6.6 3 4.4 3 7.F	6.3 -5.4 -9.0	3 0 3 0	4 21.4 4 17.5	-18.5	-1 -1 -1	1 5 5	21.0 2.4 21.4	-21.5
2 3	10	1 4.4 1 10.6	5.7 -13.9				-4 4 -4 5 -4 6	2 18.0 2 48.3 2 3.8	16.1 -48.8 3.8	6 1 6 2 6 3	3 9.1 3 2.R 3 15.3	-8.3 1.8 16.2	3 3 4 5	4 5.9 4 21.8 4 2.8	-4.6 19.9 7	-1 -1	5 5 5	< 2.7 14.8	2.9
3337	5456	47.2 1 < 2.1 1 7.6	24.4 7.2	0 0 1 0 2		-67.5	-4 7 -4 8 -4 9	z 21.3 2 9.8 2 11.4	18.4 -9.5 12.7	-1 1 -1 2 -1 3	3 80.6 3 23.8 3 19.3	79.7 -24.0 1.1.1	3 6 3 7 3 8	4 10.7 4 6.4 4 6.3	-9.5 8.6 -4.9	-2 -2 -2	1 5	8.7 42.6 10.7	- 3. 3 44. 0 12. 3
33	7 8	1 22.9 1 4.6	-21.1	0 4 0 5 0 6	2 33.0 2 27.1 2 14.8	36.1 -25.4 -13.6		2 31.7 2 36.1	38.3 39.0	-1 5	3 20.4 10.6 10.6	11.6	4 0 4 1 5 2	4 21.8 4 11.6	-22.7	-2 -2 -2	15 6	4.8 5.8 12.5	-4.4 -14.5
444	2	1 3.5 1 8.5 1 < 2.2	-1.4	0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 < 3.0 2 15.2 10.8	-13.7 -11.5	-5 34	2 10.6 2 22.7 2 17.7	-16.4 19.6 -16.1	-1 E	3 15.7	-17.9	4 3 4 5	4 17.4 4 23.1 4 2.6	-16.9 21.P 3.2	-3 -3 -3	1 5 2 5 3 5	14.2 4.6 38.2	-16.1 .4 -39.3
1444	567	5.4 1 10.7 1 9.7	4.0 8.6 -9.4	1 0	2 35.9 2 31.7	-50.3	-5 6	2 20.7 2 11.0 2 3.0 2 12.5	-19.7 11.2 2.2	-2 1 -2 2 -2 3	3 45.1 3 38.5 3 34.2	-49.1 -43.5 37.1	46 50	4 13.0 4 2 <u>0.4</u>	-12.6	-3 -3 -3	4 5 6 5	17.3 5.0 11.0	-15.5 -5.9 -9.7
4	8 9	1 17.3 1 10.1	-17.1	1 2	2 21.F 2 6.1	26.0	-5 9 -6 0	2 20.7	22.6	-2 5	5 12.3 3 10.9 3 20.7	13.5	5 2 5 3	4 23.2 4 9.5 4 25 2	-6.3 20.5 9.1	-4 -4 -4	1 5 2 5 3 5	2.3 7.0	-1.6 5.2 -12.1
							-6 1	2 14.0	12.1	- /				- 5.2					

MARC ALLEAUME ET JOSEPH DECAP

Table 2 (cont.)

h	k	1	KF.	Fe	h	k	1	KF.	F.	h	k	1	KF.	Fe	h	k	1	KF.	F,	h	k	1	KF.	F,	h	k	1	KF₀	F,
444	4 56	5 5 5	5.5 9.4 8.2	4.0 -9.6 -5.7	-1	0 1 2	666	5.8 13.4 6.4	5.9 -13.7 6.9	-8 -8	0 1	6	10.0 5.2	9.P 7.2	-4 -4 -4	456	7 7 7	3.7 12.5 8.5	3.4 ~10.4 7.5	-1 -1	0	8	8.1 13.7	ጽ.ታ 15.2	- 7 - 7	2 3	8	8.0 11.7	-6.7
ትትትት	12345	55555	16.7 2.4 11.4 6.0 11.7	15.8 -1.1 -10.9 -7.3 11.0	-1 -1 -1 -1 -2	n456 0	6 6 6	15.3 19.6 23.4 5.7 8.7	-15.8 21.2 22.6 -5.5 11.0	0 0 0	1 2 3 4	77777	6.6 11.8 37.3 4.7	4.3 11.5 -38.6 1.7	-5 -5 -5 -5	12345	777777777777777777777777777777777777777	2.7 16.5 12.5 10.1 13.8	3.4 -16.6 12.5 8.5 12.7	-1 -1 -1 -1	23456	0880	5.6 3.2 18.3	-4.7 -5.2 -3.5 -13.7 {.0	3- -8 -8 -8	0 1 2 3	8888	< 2.1 6.9).3 15.1	-13.3
6 6 6	1 2 3 4	5555	12.1 4.3 21.3 16.9	11.9 -4.7 -20.0 16.7	-2 -2 -2 -2 -2 -2	120456	00000	19.4 28.4 18.4 15.8 7.9	-20.1 29.5 -3.5 19.0 15.0 -4.9	0	5 6 1 2 3	777777	7.8 5.8 12.6 4.5 9.4	-7.9 -3.3 13.3 3.0 -9.4	-5 -6 -6 -6	6 1 2 3 4	7 7 7 7 7 7 7 7 7 7	9.6 2.4 14.5 25.3	8.9 -14.9 24.5 7.4	-2 -2 -2 -2 -2 -2	012345	188108	17.1 6.5 6.1 13.1 14.2 19.4	17.1 5.1 -5.2 10.6 -13.1 -18.3	0 0 0	1 2 3 4	9 9 9 9	1.8 7.3 7.1 6.4	-7.5
-7 -7	2	5	13.8 25.0	-22.4	-3 -3 -3	0 1 2	6666	32.0	-31.9 9.5 5.9	1	د 5 1	7777	13.4	-13.9 -5.6	-6 -7	5	; ;	6.3 21.3	-5.5 -18.3	-2 -3	6 0 1	5 5 7	5.6 35.9 10.1	5.5 31.6	1	2	9	6.P 5.0	-7.0 -3.0
0 0 0	0 1 2	666	5.6 34.0 12.4	-6.6 -35.5 -15.7	-3	3456	6666	30.9 33.1 21.6 17.4	-29.1 32.7 21.0	2 2 2	2 3	7777	13.2	11.6	-7 -7	34	;	12.2	10.0	-3	2 34 5	0886	15.0 15.6 13.7	-17.0 12.9 -12.9	22	23	9 9	8.7 4.3	-0.4
00000	34567	66666	4.2 14.9 21.0 12.5 2.7	-3.7 15.9 20.5 -10.6 -4.9	-4 -4 -4 -4	0 1 2 3	6666	7.8 5.6 2.0 4.1	-9.3 7.2 4 2.6		23	777777777777777777777777777777777777777	16.1 6.6 11.0 17.7	13.8 -5.4 10.9 -18.7	-f: -f: 0	2	7 7	< 1.6	7.2	-3 -4 -4 -4	6 0 1 2	8 8 7 9	5.9 17.6 15.0 13.2	5.3 16.2 -16.3 -15.2	-1 -1 -1 -1	23456	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.2 11.4 3.3 6.0	16.8 -2.1 4.5
1 1 1 1	012 245	64400	30.3 16.1 6.5 21.2 F.2 44.1	33.9 -16.8 -7.4 -21.3 6.7 40.9	-4 -4 -5 -5	4 5 6 0 1 2	000 000	18.5 14.6 17.2 15.9 11.5 2.3	17.6 -13.9 -15.6 -17.3 11.8 -1.7	-1 -1 -1 -2 -2	3456 12	777777777777777777777777777777777777777	29.0 5.4 13.7 7.6 11.8 22.0	-30.2 3.9 -12.5 6.6 13.4 -23.8	0 0 0 0 1	12345 0	58223	9.4 12.6 23.4 P.2 19.7 2.7	9.5 15.2 23.6 -7.8 -20.2	-4 -4 -4 -5	3450		1.9 3f.9 3.7 14.0 17.1	-1.0 -38.5 -2.4 14.2 17.5 -5.0	-2 -2 -2 -2 -2 -2	123456	999999	1.3 15.7 13.1 8.6 3.2 3.4	2.7 15.9 14.1 -7.6 3.3 5.1
222222	012345	656666	9.6 15.0 12.1 2.6 21.2 3.1	6.2 -16.2 -12.8 -2.9 -21.5 8.2		345 012	000 000	2.5 7.9 20.0 2.4 27.4 3.5	1 7.0 -19.4 -4.9 27.1 .4	-2 -2 -2 -2 -3 -3	3456 12	77777777777	17.6 P.1 9.1 12.5 20.4	-17.7 6.2 -8.4 14.1 -1.1 -21.0	1	12045 0		6.3 3.0 6.8 16.1 16.0 9.5	5.0 4.2 6.3 16.8 -17.7 -9.3		2345-5 01		2.1 9.4 15.5 3.2	-7.8 -2.9 -9.4 14.7 4.2 19.6	-3 -33 -33 -33	123456	999999	4.2 20.2 11.4 5.4 6.1 11.6	6.7 17.6 10.8 -7.2 5.0 -14.2
	01254	66666	20.9 13.3 11.4 < 2.7	19.6 13.2 10.4 1.9	-6	34 01	66	25.5 5.6	-24.0 5.5 6.7	-3	5456	7777	26.7 5.9 20.6	25.7 7.3 20.8	2 2 2 2 2	234	23330	6.4 6.1 11.6	6.3 6.7 5.4 11.9	-3 -3 -6 -6	2345	1000 a	6.3 11.2 2.1 14.0	-10.7 -5.9 -10.4 .5 14.7	-4 -4 -4 -4	1 2 3 4	99999	5.9 18.5 1.2 13.4	-4.2 17.1 -13.1
4	0	6	18.9	17.6	-7	ŝ	6	7.5	-15.1	-4 -4	23	777	20.6 8.9	-22.5	nmn	0 1 2	88 C	17.7	-21.8 -4.4 5.3	-7 -7	0 1	8 8	8.5 15.5	8.0 -15.9	-5 -5	2 3	9 9	20.7 9.3	19.5 -8.7

					Table 2 (cont.)
h	k	1	KF.	Fe	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23456	999999	20.7 9.3 8.8 < 1.8 17.4	19.5 -8.7 -8.8 1.4 -19.2	
\$ 5666	12345	99999 99999	5.2 12.5 13.2 9.8 5.7	3.8 12.3 -12.2 -10.0 6.6	
-7	1 2 3	9 9 9	12.9 8.1 25.7	10.7 7.9 -24.3	
8-8-8	1 2 3	9 9 9	< 1.7 10.4 11.1	.7 -9.4 -10.9	
-9	1	9	4.3	6.1	
-5	1	9	7.0	7.3	

ordinateur IBM 1620. (Alléaume, Bouzon & Clastre, 1964).

Après affinement sur les positions et les facteurs d'agitation thermique des atomes de soufre, carbone et azote, l'étude des projections des fonctions-différence de Cochran a permis de placer l'ensemble des atomes d'hydrogène. Ces fonctions différence mettant aussi en évidence une forte anisotropie de l'agitation de l'atome de soufre, l'affinement des coefficients d'agitation thermique anisotrope de cet atome a été alors effectué.

Le facteur de reliabilité final est R=0,11. En ne tenant compte que des réflexions mesurables, ce facteur est de 0,10.

Les valeurs finales des différents paramètres sont reportés dans le Tableau 1. Le Tableau 2 donne les valeurs des facteurs de structure observés et calculés.

# Discussion

Le Tableau 3 donne les longueurs de liaison et les angles de liaison. Les écarts-type ont été calculés par la méthode de Cruickshank *et al.* (1961). Les atomes

# Tableau 3. Longueurs et angles de liaison

Dis- tances	Ecart- type		Angles	type
1,44 Å	0,01	O(1)-S-O(2)	118,1°	1
1,44	0,01	O(1) - S - N(1)	106,0	1
1,63	0,01	O(2) - S - N(1)	107,2	1
1,75	0,01	C(1)-S-O(1)	107,0	1
1,41	0,02	C(1) - S - O(2)	107,2	1
1,38	0,02	C(1)-S-N(1)	110,4	1
1,41	0,02	S-C(1)-C(6)	120,3	1
1,41	0,02	S-C(1)-C(6)	120,3	1
1,38	0,02	C(1)-C(2)-C(3)	119,2	2
1,40	0,02	C(2)-C(3)-C(4)	121,1	2
1,38	0,02	C(4) - C(5) - C(6)	118,4	2
		C(5)-C(6)-C(1)	120,3	2
		C(6)-C(1)-C(2)	120,1	2
		C(3)-C(4)-N(2)	120,1	2
		C(5)-C(4)-N(2)	121,1	2
	Dis- tances 1,44 Å 1,44 1,63 1,75 1,41 1,38 1,41 1,38 1,40 1,38	Dis- Ecart- tances type 1,44 Å 0,01 1,44 0,01 1,63 0,01 1,75 0,01 1,41 0,02 1,41 0,02 1,41 0,02 1,41 0,02 1,41 0,02 1,40 0,02 1,38 0,02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

N(2) et S sont dans le plan du cycle. L'équation du plan moyen de la molécule est:

x+1,17 y-1,46 z-4,67=0



Fig. 1. Orientation du tétraèdre par rapport au plan moyen.

La liaison S(1) C(1) a la même longueur que dans l'acide sulfanilique (Rae & Maslen, 1962), mais le plan de symétrie du tétraèdre,

$$\begin{array}{c} O(2) \\ \parallel \\ C(1)-S-N(1)H_2 \\ \parallel \\ O(1) \end{array}$$

fait un angle de  $63^{\circ}$  avec le plan du cycle, (Fig. 1) alors que dans l'acide sulfanilique ces deux plans sont sensiblement perpendiculaires. Le cycle benzénique est normal ,mais on constate un léger raccourcissement des liaisons C(2) C(3) et C(5) C(6); le même raccourcissement a été observé dans l'acide sulfanilique, la *p*-nitroaniline (Trueblood, Goldish & Donohue, 1961), *etc*,

La liaison C(4) N(2) est identique à la liaison correspondante de la *p*-nitroaniline mais sensiblement plus courte (1,38 au lieu de 1,49 Å) que dans l'acide sulfanilique.

2

# Assemblage des molécules; liaisons-hydrogène

Le Tableau 4 donne les distances interatomiques les plus courtes entre les molécules voisines. Trois distances paraissent correspondre à des liaisons hydrogène  $NH \cdots O$  voisines de 3 Å; deux de ces liaisons

# Tableau 4. Distances interatomiques entre<br/>molécules voisines

Les indices ' et " se rapportent aux mailles inférieure et supérieure suivant x

N(1)111-O(2)11' N(1)111-O(1)1v N(2)111-O(1)11 N(2)111-O(1)11'''	3,11 Å 3,00 3,26 3,07
N(2) = C(1)	2 (2
$N(2)_{I} - C(1)_{III}$	3,03
$-C(2)_{III}$	3,59
$-C(3)_{111}$	3.63
-C(4)III	3,73
$-\mathbf{C}(5)_{111}$	3.76
	2 70
-C(6)III	3,70



Fig. 2. Projection de la structure sur le plan O y z.

intéressent l'atome N(1) amide, la 3ème l'atome N(2) amine.

Nous rappelons que les atomes d'hydrogène ont été placés sur les fonctions-différence, et au voisinage des liaisons-hydrogène possibles. Leur introduction a fait baisser le facteur R de 0,005. De plus, par affinement automatique aucune variation notable n'est apparue sur les paramètres de ces atomes. Mais il convient cependant de ne considérer les positions de ces atomes d'hydrogène que comme des positions probables, l'atome de soufre empêchant en particulier une résolution fine de la structure.

La liaison la plus courte  $N(1)_{III}$ - $O(1)_{IV}$  est sensiblement parallèle à l'axe z, c'est-à-dire à l'axe d'allongement du cristal. L'angle  $S_{III}N(1)_{III}O(1)_{IV}$  est de  $102^{\circ}$ . L'angle  $S_{III}N(1)_{III}O(2)'_{II}$  est de  $122^{\circ}$ . Pour l'azote N(2), l'angle C(4)_{III}N(2)_{III} O(1)''_{IV} est de  $114^{\circ}$ . La distance N(2)_{III}-O(1)_{II} parait trop longue (3,27 Å) pour être attribuée à une liaison-hydrogène. De plus l'angle C(4)_{III}N(2)_{III}O(1)_{II} est de 157^{\circ}.

Ces résultats sont tout à fait concordants avec ceux obtenus par spectroscopie infra-rouge, où 3 liaisons-hydrogène d'énergies décroissantes sont mises en évidence (Novack, 1964).

Enfin il est intéressant de noter que l'azote  $N(2)_{I}$  est pratiquement situé sur l'axe normal au cycle III, les distances  $N(2)_{I}C_{III}$  étant voisines de 3,65 Å (Tableau 4).



Fig. 3. Projection de la structure sur le plan x O z.



Fig. 4. Projection de la structure sur le plan x y O.

Si l'on attribue aux liaisons-hydrogène la majeure partie de l'énergie de cohésion du cristal, il semble que les contacts de van der Waals de N(2) avec ces 6 atomes soient responsables de l'orientation du cycle benzénique de la molécule voisine.

#### Références

ALLÉAUME, M., BOUZON, C., CLASTRE, J. (1964). Bull. Soc. franç. Minér. Crist. 87, 3, 445.

- CRUICKSHANK et al. (1961). Computing méthods and the phase problem in X-Ray crystal analysis. Paper 6, 32.
- GAY, R. (1951). Bull. Soc. franç. Minér. Crist. p. 1330.

- International Tables for X-ray Crystallography (1959). Vol. II. 5.3, 291.
- International Tables for X-ray Crystallography (1962). Vol. III. 3.2, 157.

NOVACK (1964). Communication personnelle.

- O'CONNOR, B. H. & MASLEN, E. N. (1965). Acta Cryst. 18, 363.
- RAE, A.I. M. & MASLEN, E.N. (1962). Acta Cryst. 15, 1285.
- TRUEBLOOD, K. N. GOLDISH, E. & DONOHUE, J. (1961). Acta Cryst. 14, 1009.
- WATANABE, A. (1941). Naturwissenschaften, 29, 116.
- WATANABE, A. (1942). J. Pharm. Soc. Japan, 62, 503.
- YAKOWITZ, M. L. (1948). J. Assoc. Agric. Chemists, 31, 651.